Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Decreased anxiety- and depression-like behaviors and hyperactivity in a type 3 deiodinase-deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism.

Hypo- and hyperthyroid states, as well as functional abnormalities in the hypothalamic-pituitary-thyroid axis have been associated with psychiatric conditions like anxiety and depression. However, the nature of this relationship is poorly understood since it is difficult to ascertain the thyroid status of the brain in humans. Data from animal models indicate that the brain exhibits efficient homeostatic mechanisms that maintain local levels of the active thyroid hormone, triiodothyronine (T3) within a narrow range. To better understand the consequences of peripheral and central thyroid status for mood-related behaviors, we used a mouse model of type 3 deiodinase (DIO3) deficiency (Dio3 -/- mouse). This enzyme inactivates thyroid hormone and is highly expressed in the adult central nervous system. Adult Dio3 -/- mice exhibit elevated levels of T3-dependent gene expression in the brain, despite peripheral hypothyroidism as indicated by low circulating levels of thyroxine and T3. Dio3 -/- mice of both sexes exhibit hyperactivity and significantly decreased anxiety-like behavior, as measured by longer time spent in the open arms of the elevated plus maze and in the light area of the light/dark box. During the tail suspension, they stayed immobile for a significantly shorter time than their wild-type littermates, suggesting decreased depression-like behavior. These results indicate that increased thyroid hormone in the brain, not necessarily in peripheral tissues, correlates with hyperactivity and with decreases in anxiety and depression-like behaviors. Our results also underscore the importance of DIO3 as a determinant of behavior by locally regulating the brain levels of thyroid hormone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app