Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Wave-Tunable Lattice Equivalents toward Micro- and Nanomanipulation.

Nano Letters 2016 October 13
The assembly of micro- and nanomaterials is a key issue in the development of potential bottom-up construction of building blocks, but creating periodic arrays of such materials in an efficient and scalable manner still remains challenging. Here, we show that a cymatic assembly approach in which micro- and nanomaterials in a liquid medium that resonate at low-frequency standing waves can be used for the assembly in a spatially periodic and temporally stationary fashion that emerges from the wave displacement antinodes of the standing wave. We also show that employing a two-dimensional liquid, rather than a droplet, with a coffee-ring effect yields a result that exhibits distinct lattice equivalents comprising the materials. The crystallographic parameters, such as the lattice parameters, can be adjusted, where the parameters along the x- and y-axes are controlled by the applied wave frequencies, and the one along z-axis is controlled by a transparent layer as a spacer to create three-dimensional crystal equivalents. This work represents an advancement in assembling micro- and nanomaterials into macroscale architectures on the centimeter-length scale, thus establishing that a standing wave can direct micro- and nanomaterial assembly to mimic plane and space lattices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app