Add like
Add dislike
Add to saved papers

A Mathematical Model with Quarantine States for the Dynamics of Ebola Virus Disease in Human Populations.

A deterministic ordinary differential equation model for the dynamics and spread of Ebola Virus Disease is derived and studied. The model contains quarantine and nonquarantine states and can be used to evaluate transmission both in treatment centres and in the community. Possible sources of exposure to infection, including cadavers of Ebola Virus victims, are included in the model derivation and analysis. Our model's results show that there exists a threshold parameter, R 0, with the property that when its value is above unity, an endemic equilibrium exists whose value and size are determined by the size of this threshold parameter, and when its value is less than unity, the infection does not spread into the community. The equilibrium state, when it exists, is locally and asymptotically stable with oscillatory returns to the equilibrium point. The basic reproduction number, R 0, is shown to be strongly dependent on the initial response of the emergency services to suspected cases of Ebola infection. When intervention measures such as quarantining are instituted fully at the beginning, the value of the reproduction number reduces and any further infections can only occur at the treatment centres. Effective control measures, to reduce R 0 to values below unity, are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app