JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Two-way principal component analysis for matrix-variate data, with an application to functional magnetic resonance imaging data.

Biostatistics 2017 April 2
Many modern neuroimaging studies acquire large spatial images of the brain observed sequentially over time. Such data are often stored in the forms of matrices. To model these matrix-variate data we introduce a class of separable processes using explicit latent process modeling. To account for the size and two-way structure of the data, we extend principal component analysis to achieve dimensionality reduction at the individual level. We introduce necessary identifiability conditions for each model and develop scalable estimation procedures. The method is motivated by and applied to a functional magnetic resonance imaging study designed to analyze the relationship between pain and brain activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app