Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The evolutionarily conserved transcription factor Sp1 controls appendage growth through Notch signaling.

Development 2016 October 2
The appendages of arthropods and vertebrates are not homologous structures, although the underlying genetic mechanisms that pattern them are highly conserved. Members of the Sp family of transcription factors are expressed in the developing limbs and their function is required for limb growth in both insects and chordates. Despite the fundamental and conserved role that these transcription factors play during appendage development, their target genes and the mechanisms by which they participate in control limb growth are mostly unknown. We analyzed here the individual contributions of two Drosophila Sp members, buttonhead (btd) and Sp1, during leg development. We show that Sp1 plays a more prominent role controlling leg growth than does btd We identified a regulatory function of Sp1 in Notch signaling, and performed a genome-wide transcriptome analysis to identify other potential Sp1 target genes contributing to leg growth. Our data suggest a mechanism by which the Sp factors control appendage growth through the Notch signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app