Add like
Add dislike
Add to saved papers

[Role of epithelial sodium channel in rat osteoclast differentiation and bone resorption].

OBJECTIVE: To explore the role of epithelial sodium channel (ENaC) in regulating the functional activity of osteoclasts.

METHODS: Multinucleated osteoclasts were obtained by inducing the differentiation of rat bone marrow cells with macrophage colony-stimulating factor (M-CSF) and RANKL. The osteoclasts were exposed to different concentrations of the ENaC inhibitor amiloride, and the expression of ENaC on osteoclasts was examined using immunofluorescence technique. The osteoclasts were identified with tartrate-resistant acid phosphatase (TRAP) staining, and the positive cells were incubated with fresh bovine femoral bone slices and the number of bone absorption pits was counted by computer-aided image processing. RT-PCR was performed to analyze the expression of cathepsin K in the osteoclasts.

RESULTS: s Exposure to different concentrations of amiloride significantly inhibited the expression of ENaC and reduced the number of TRAP-positive osteoclasts. Exposure of the osteoclasts to amiloride also reduced the number of bone resorption pits on bone slices and the expression of osteoclast-specific gene cathepsin K.

CONCLUSION: s ENaC may participate in the regulation of osteoclast differentiation and bone resorption, suggesting its role in functional regulation of the osteoclasts and a possibly new signaling pathway related with ENaC regulation for modulating bone metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app