JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization and genome functional analysis of a novel metamitron-degrading strain Rhodococcus sp. MET via both triazinone and phenyl rings cleavage.

Scientific Reports 2016 August 32
A novel bacterium capable of utilizing metamitron as the sole source of carbon and energy was isolated from contaminated soil and identified as Rhodococcus sp. MET based on its morphological characteristics, BIOLOG GP2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate MET showed a 6,340,880 bp genome with a 62.47% GC content and 5,987 protein-coding genes. In total, 5,907 genes were annotated with the COG, GO, KEGG, Pfam, Swiss-Prot, TrEMBL, and nr databases. The degradation rate of metamitron by the isolate MET obviously increased with increasing substrate concentrations from 1 to 10 mg/l and subsequently decreased at 100 mg/l. The optimal pH and temperature for metamitron biodegradation were 7.0 and 20-30 °C, respectively. Based on genome annotation of the metamitron degradation genes and the metabolites detected by HPLC-MS/MS, the following metamitron biodegradation pathways were proposed: 1) Metamitron was transformed into 2-(3-hydrazinyl-2-ethyl)-hydrazono-2-phenylacetic acid by triazinone ring cleavage and further mineralization; 2) Metamitron was converted into 3-methyl-4-amino-6(2-hydroxy-muconic acid)-1,2,4-triazine-5(4H)-one by phenyl ring cleavage and further mineralization. The coexistence of diverse mineralization pathways indicates that our isolate may effectively bioremediate triazinone herbicide-contaminated soils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app