Add like
Add dislike
Add to saved papers

miR-223 increases gallbladder cancer cell sensitivity to docetaxel by downregulating STMN1.

Oncotarget 2016 September 21
BACKGROUND: MicroRNAs (miRs) are involved in cancer carcinogenesis, and certain regulatory miRs could provide promising therapeutic methods for refractory malignancies, such as gallbladder cancer (GBC). miR-223 was found to play a pivotal role in enhancing chemotherapeutic effects, therefore evoking interest in the role of miR-223 in GBC.

RESULTS: miR-223 was decreased in GBC tissues and cell lines, and ectopic miR- 223 expression exhibited multiple anti-tumorigenic effects in GBC cells, including decreased proliferation, migration and invasion in vitro. However, treatment with a miR-223 inhibitor increased cell viability. We determined that STMN1 was negatively correlated with and regulated by miR-223 in GBC. miR-223 increased GBC sensitivity to docetaxel in vitro and in vivo, and the induced sensitivity to docetaxel was suppressed by the restoration of STMN1 expression.

METHODS: We examined miR-223 expression in GBC tissue and GBC cell lines using qRT-PCR. The effects of modulated miR-223 expression in GBC cells were assayed using Cell Counting Kit-8 (CCK8), flow cytometry, and wound-healing and invasion assays. Susceptibility to docetaxel was evaluated in miR-223/STMN1-modulated GBC cells and xenograft tumor models. The protein expression of relevant genes was examined by Western blotting.

CONCLUSIONS: These findings indicated that miR-223 might serve as an onco-suppressor that enhances susceptibility to docetaxel by downregulating STMN1 in GBC, highlighting its promising therapeutic value.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app