Add like
Add dislike
Add to saved papers

Exploring the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading.

The objective of this paper is to explore the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading, and elucidate whether drug-polymer compatibility, as predicted by Hansen solubility parameters (HSPs), can be used as a tool for drug-polymer pairs screening and guide the design of grafted polymeric micelles. HSPs of 27 drugs and three grafted copolymers were calculated according to group contribution method. The drug-polymer compatibilities were evaluated using the approaches of Flory-Huggins interaction parameters (χFH) and polarity difference (△Xp). Two models, model A and B, were put forward for drug-polymer compatibility prediction. In model A, hydrophilic/hydrophobic part as a whole was regarded as one segment. And, in model B, hydrophilic and hydrophobic segments were evaluated individually. First of all, using chitosan (CS)-grafted-glyceryl monooeate (GMO) based micelle as an example, the suitability of model A and model B for predicating drug-polymer compatibility was evaluated theoretically. Thereafter, corresponding experiments were carried out to check the validity of the theoretical prediction. It was demonstrated that Model B, which evaluates drug compatibility with both hydrophilic and hydrophobic segments of the copolymer, is more reliable for drug-polymer compatibility prediction. Moreover, the approach of model B allows for the selection of a defined grafted polymer with for a specific drug and vice versa. Thus, drug compatibility evaluation via HSPs with both hydrophilic and hydrophobic segments is a suitable tool for the rational design of grafted polymeric micelles. The molecular dynamics (MD) simulation study provided further support to the established model and experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app