Add like
Add dislike
Add to saved papers

A New Discrete-Time Multi-Constrained $K$-Winner-Take-All Recurrent Network and Its Application to Prioritized Scheduling.

In this paper, we propose a novel discrete-time recurrent neural network aiming to resolve a new class of multi-constrained K-winner-take-all (K-WTA) problems. By facilitating specially designed asymmetric neuron weights, the proposed model is capable of operating in a fully parallel manner, thereby allowing true digital implementation. This paper also provides theorems that delineate the theoretical upper bound of the convergence latency, which is merely O(K). Importantly, via simulations, the average convergence time is close to O(1) in most general cases. Moreover, as the multi-constrained K-WTA problem degenerates to a traditional single-constrained problem, the upper bound becomes exactly two parallel iterations, which significantly outperforms the existing K-WTA models. By associating the neurons and neuron weights with routing paths and path priorities, respectively, we then apply the model to a prioritized flow scheduler for the data center networks. Through extensive simulations, we demonstrate that the proposed scheduler converges to the equilibrium state within near-constant time for different scales of networks while achieving maximal throughput, quality-of-service priority differentiation, and minimum energy consumption, subject to the flow contention-free constraints.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app