Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Deep Conditional Random Field Approach to Transmembrane Topology Prediction and Application to GPCR Three-Dimensional Structure Modeling.

Transmembrane proteins play important roles in cellular energy production, signal transmission, and metabolism. Many shallow machine learning methods have been applied to transmembrane topology prediction, but the performance was limited by the large size of membrane proteins and the complex biological evolution information behind the sequence. In this paper, we proposed a novel deep approach based on conditional random fields named as dCRF-TM for predicting the topology of transmembrane proteins. Conditional random fields take into account more complicated interrelation between residue labels in full-length sequence than HMM and SVM-based methods. Three widely-used datasets were employed in the benchmark. DCRF-TM had the accuracy 95 percent over helix location prediction and the accuracy 78 percent over helix number prediction. DCRF-TM demonstrated a more robust performance on large size proteins (>350 residues) against 11 state-of-the-art predictors. Further dCRF-TM was applied to ab initio modeling three-dimensional structures of seven-transmembrane receptors, also known as G protein-coupled receptors. The predictions on 24 solved G protein-coupled receptors and unsolved vasopressin V2 receptor illustrated that dCRF-TM helped abGPCR-I-TASSER to improve TM-score 34.3 percent rather than using the random transmembrane definition. Two out of five predicted models caught the experimental verified disulfide bonds in vasopressin V2 receptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app