JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effectiveness of Reference Signal-Based Methods for Removal of EEG Artifacts Due to Subtle Movements During fMRI Scanning.

OBJECTIVE: Subtle motion of an epileptic patient examined with co-registered EEG and functional MRI (EEG-fMRI) may often lead to spurious fMRI activation patterns when true epileptic spikes are contaminated with motion artefacts. In recent years, methods relying on reference signals for correcting these subtle movements in the EEG have emerged. In this study, the performance of two reference-based devices are compared to the template-based method with regard to their ability to remove movement-related artifacts in EEG measured during scanning.

METHODS: Measurements were performed with a novel double layer cap consisting of 29 EEG and 29 reference electrodes, and with a current loop cap consisting of 60 electrodes and three current loop wires attached to the cap. EEG was acquired inside the scanner during resting state, as well as when the subject was performing a cued movement task. For the double layer cap recordings, newly developed artifact removal algorithms are introduced and both reference signal-based methods are compared to a template-based correction method.

RESULTS: The BCG artifacts occurring at resting state could be removed successfully by both the reference signal-based methods as well as by the template-based method. However, the reference signal-based methods were also capable of removing EEG artifacts induced by subtle movements, whereas the template-based method failed to remove these artifacts.

CONCLUSION: Reference signal-based methods enable to correct for artifacts due to subtle movements, which are not removed by commonly used template-based removal algorithms.

SIGNIFICANCE: Sensitivity of EEG-fMRI analysis in patients with focal epilepsy is improved by avoiding erroneous detections of subtle movements as epileptic spikes in the EEG.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app