Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Selectively Sensitizing Malignant Cells to Photothermal Therapy Using a CD44-Targeting Heat Shock Protein 72 Depletion Nanosystem.

ACS Nano 2016 September 28
Selectively enhance the therapeutic efficacy to malignancy is one of the most important issues for photothermal therapy (PTT). However, most solid tumors, such as triple negative breast cancer (TNBC), do not have identifiable surface markers to distinguish themselves from normal cells, thus it is challenging to selectively identify and eliminate those malignances by PTT. In this report, we hypothesized that, by targeting CD44 (one TNBC-overexpressed surface molecule) and depleting heat shock protein 72 (HSP72, one malignancy-specific-overexpressed thermotolerance-related chaperone) subsequently, the TNBC could be selectively sensitized to PTT and improve the accuracy of treatment. To this end, a rationally designed nanosystem gold nanostar (GNS)/siRNA against HSP72 (siHSP72)/hyaluronic acid (HA) was successfully constructed using a layer-by-layer method. Hydrodynamic diameter and zeta potential analysis demonstrated the formation of GNS/siHSP72/HA having a particle size of 73.2 ± 3.8 nm and a negative surface charge of -18.3 ± 1.6 mV. The CD44-targeting ability of GNS/siHSP72/HA was confirmed by the flow cytometer, confocal microscopic imaging, and competitive binding analysis. The HSP72 silencing efficacy of GNS/siHSP72/HA was ∼95% in complete culture medium. By targeting CD44 and depleting HSP72 sequentially, GNS/siHSP72/HA could selectively sensitize TNBC cells to hyperthermia and enhance the therapeutic efficacy to TNBC with minimal side effect both in vitro and in vivo. Other advantages of GNS/siHSP72/HA included easy synthesis, robust siRNA loading capacity, endosome/lysosome escaping ability, high photothermal conversion efficacy and superior hemo- and biocompatibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app