Add like
Add dislike
Add to saved papers

Loss of strength capacity is associated with mortality, but resistance exercise training promotes only modest effects during cachexia progression.

Life Sciences 2016 October 16
AIMS: Resistance exercise training (RET) has been adopted as non-pharmacological anti-catabolic strategy. However, the role of RET to counteract cancer cachexia is still speculative. This study aimed to verify whether short-term RET would counteract skeletal muscle wasting in a severe cancer cachexia rat model.

MAIN METHODS: Wistar rats were randomly allocated into four experimental groups; 1) untrained control rats (control), 2) rats submitted to RET (control+RET), 3) untrained rats injected with Walker 256 tumor cells in the bone marrow (tumor) and 4) rats injected with Walker 256 tumor cells in the bone marrow and submitted to RET (tumor+RET).

KEY FINDINGS: Tumor group displayed skeletal muscle atrophy fifteen days post tumor cells injection as assessed by plantaris (-20.5%) and EDL (-20.0%) muscle mass. EDL atrophy was confirmed showing 43.8% decline in the fiber cross sectional area. Even though RET increased the lactate dehydrogenase protein content and fully restored phosphorylated form of 4EBP-1 to the control levels in skeletal muscle, it failed to rescue muscle morphology in tumor-bearing rats. Indeed, RET did not mitigated loss of muscle function, anorexia, tumor growth or mortality rate. However, loss of strength capacity (assessed by 1-RM test performance) demonstrated a negative correlation with rats' survival (p=0.02; r=0.40), suggesting that loss of strength capacity might predict cancer mortality.

SIGNIFICANCE: These results demonstrated that bone marrow injection of Walker 256 tumor cells in rats induces cancer cachexia, strength capacity is associated with cancer survival and short-term RET promotes only modest effects during cachexia progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app