Add like
Add dislike
Add to saved papers

Pore-scale dispersion: Bridging the gap between microscopic pore structure and the emerging macroscopic transport behavior.

We devise an efficient methodology to provide a universal statistical description of advection-dominated dispersion (Péclet→∞) in natural porous media including carbonates. First, we investigate the dispersion of tracer particles by direct numerical simulation (DNS). The transverse dispersion is found to be essentially determined by the tortuosity and it approaches a Fickian limit within a dozen characteristic scales. Longitudinal dispersion was found to be Fickian in the limit for bead packs and superdiffusive for all other natural media inspected. We demonstrate that the Lagrangian velocity correlation length is a quantity that characterizes the spatial variability for transport. Finally, a statistical transport model is presented that sheds light on the connection between pore-scale characteristics and the resulting macroscopic transport behavior. Our computationally efficient model accurately reproduces the transport behavior in longitudinal direction and approaches the Fickian limit in transverse direction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app