Add like
Add dislike
Add to saved papers

Instability of plane-parallel flow of incompressible liquid over a saturated porous medium.

The linear stability of plane-parallel flow of an incompressible viscous fluid over a saturated porous layer is studied to model the instability of water flow in a river over aquatic plants. The saturated porous layer is bounded from below by a rigid plate and the pure fluid layer has a free, undeformable upper boundary. A small inclination of the layers is imposed to simulate the riverbed slope. The layers are inclined at a small angle to the horizon. The problem is studied within two models: the Brinkman model with the boundary conditions by Ochoa-Tapia and Whitaker at the interface, and the Darcy-Forchheimer model with the conditions by Beavers and Joseph. The neutral curves and critical Reynolds numbers are calculated for various porous layer permeabilities and relative thicknesses of the porous layer. The results obtained within the two models are compared and analyzed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app