Add like
Add dislike
Add to saved papers

Magnetic-field-driven crack formation in an evaporated anisotropic colloidal assembly.

We report the effect of applied magnetic field on the morphology of cracks formed after evaporation of a colloidal suspension consisting of shape-anisotropic ellipsoidal particles on a glass substrate. The evaporation experiments are performed in sessile drop configuration, which usually leads to accumulation of particles at the drop boundaries, commonly known as the "coffee-ring effect." The coffee-ring-like deposits that accompany cracks are formed in the presence as well as in the absence of magnetic field. However, the crack patterns formed in both cases are found to differ markedly. The direction of cracks in the presence of the magnetic field is found to be governed by the orientation of particles and not solely by the magnetic field direction. Our experimental results show that at the vicinity of cracks the particles are ordered and oriented with their long-axis parallel to crack direction. In addition, we observe that the crack spacing in general increases with the height of the particulate film.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app