Add like
Add dislike
Add to saved papers

Genomic Analysis Reveals Multi-Drug Resistance Clusters in Group B Streptococcus CC17 Hypervirulent Isolates Causing Neonatal Invasive Disease in Southern Mainland China.

Neonatal invasive disease caused by group B Streptococcus (GBS) represents a significant public health care concern globally. However, data related to disease burden, serotype distribution, and molecular epidemiology in China and other Asian countries are very few and specifically relative to confined regions. The aim of this study was to investigate the genetic characteristics of GBS isolates recovered from neonates with invasive disease during 2013-2014 at Guangzhou and Changsha hospitals in southern mainland China. We assessed the capsular polysaccharide type, pilus islands (PIs) distribution and hvgA gene presence in a panel of 26 neonatal clinical isolates, of which 8 were recovered from Early Onset Disease and 18 from Late Onset Disease (LOD). Among 26 isolates examined, five serotypes were identified. Type III was the most represented (15 cases), particularly among LOD strains (n = 11), followed by types Ib (n = 5), V (n = 3), Ia (n = 2) and II (n = 1). We performed whole-genome sequencing analysis and antimicrobial susceptibility testing on the 14 serotype III isolates belonging to the hypervirulent Clonal Complex 17 (serotype III-CC17). The presence of PI-2b alone was associated with 13 out of 14 serotype III-CC17 strains. Genome analysis led us to identify two multi-drug resistance gene clusters harbored in two new versions of integrative and conjugative elements (ICEs), carrying five or eight antibiotic resistance genes, respectively. These ICEs replaced the 16 kb-locus that normally contains the PI-1 operon. All isolates harboring the identified ICEs showed multiple resistances to aminoglycoside, macrolide, and tetracycline antibiotic classes. In conclusion, we report the first whole-genome sequence analysis of 14 GBS serotype III-CC17 strains isolated in China, representing the most prevalent lineage causing neonatal invasive disease. The acquisition of newly identified ICEs conferring multiple antibiotic resistance could in part explain the spread of this specific clone among Chinese neonatal isolates and underlines the need for a constant epidemiological surveillance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app