JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Discovery of alkenones with variable methylene-interrupted double bonds: implications for the biosynthetic pathway.

Journal of Phycology 2016 December
Alkenones (C37 -C40 ) are highly specific biomarkers produced by certain haptophyte algae in ocean and lacustrine environments and have been widely used for paleoclimate studies. Unusual shorter-chain alkenones (SCA; e.g., C35 and C36 ) have been found in environmental and culture samples, but the origin and structure of these compounds are much less understood. The marine alkenone producer, Emiliania huxleyi CCMP2758 strain, was reported with abundant C35:2 Me (∆12, 19 ) alkenones when cultured at 15°C (Prahl et al. 2006). Here we show, when this strain is cultured at 4°C-10°C, that CCMP2758 produces abundant C35:3 Me, C36:3 Me, and small amounts of C36:3 Et alkenones with unusual double-bond positions of ∆7, 12, 19 . We determine the double-bond positions of the C35:3 Me and C36:3 Me alkenones by GC-MS analysis of the dimethyl disulfide and cyclobutylamine derivatives, and we provide the first temperature calibrations based on the unsaturation ratios of the C35 and C36 alkenones. Previous studies have found C35:2 Me (∆14, 19 ) and C36:2 Et (∆14, 19 ) alkenones with three-methylene interruption in the Black Sea sediments, but this is the first reported instance of alkenones with a mixed three- and five-methylene interruption configuration in the double-bond positions. The discovery of these alkenones allows us to propose a novel biosynthetic scheme, termed the SCA biosynthesis pathway, that simultaneously rationalizes the formation of both the C35:3 Me (∆7, 12, 19 ) alkenone in our culture and the ∆14, 19 Black Sea type alkenones without invoking new desaturases for the unusual double-bond positions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app