Add like
Add dislike
Add to saved papers

Enhanced anaerobic degradation of Fischer-Tropsch wastewater by integrated UASB system with Fe-C micro-electrolysis assisted.

Chemosphere 2016 December
Coupling of the Fe-C micro-electrolysis (IC-ME) into the up-flow anaerobic sludge blanket (UASB) was developed for enhanced Fischer-Tropsch wastewater treatment. The COD removal efficiency and methane production in R3 with IC-ME assisted both reached up to 80.6 ± 1.7% and 1.38 ± 0.11 L/L·d that higher than those values in R1 with GAC addition (63.0 ± 3.4% and 0.95 ± 0.09 L/L·d) and R2 with ZVI addition (74.5 ± 2.8% and 1.21 ± 0.09 L/L·d) under the optimum HRT (5 d). The Fe corrosion as electron donor reduced the ORP values and stimulated the activities of hydrogenotrophic methanogens to lower H2 partial pressure in R2 and R3. Additionally, Fe(2+) as by-product of iron corrosion, its presence could effectively increase the percentage of protein content in tightly bound extracellular polymeric substances (TB-EPS) to promote better bioflocculation, increasing to 90.5 mg protein/g·VSS (R2) and 106.3 mg protein/g·VSS (R3) while this value in R1 was simply 56.6 mg protein/g·VSS. More importantly, compared with R1, the excess accumulation of propionic acid and butyric acid in system was avoided. The macroscopic galvanic cells around Fe-C micro-electrolysis carriers in R3, that larger than microscopic galvanic cells in R2, further accelerate to transfer the electrons from anodic Fe to cathodic carbon that enhance interspecies hydrogen transfer, making the decomposition of propionic acid and butyric acid more thermodynamically feasible, finally facilitate more methane production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app