JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Theoretical Rationale for a Thermodynamic Glass State.

Using a chemical potential route, the square-well (SW) fluid model is solved in a quasichemical approximation (QCSW). At low temperatures, the liquid reaches a limiting density greater than the triple point density of a SW fluid but less than the equilibrium liquid-to-solid transition density for hard spheres. As this unique density is approached with decreasing temperature, the liquid entropy also approaches an asymptotic value, thus averting the "entropy catastrophe". Mean-field models in the van der Waals (VDW) genre fail to predict this type of behavior. In VDW models, attractive force contributions to the equation of state incorrectly diverge with decreasing temperature as 1/T, whereas those for the QCSW model asymptote to a fixed value. The QCSW model posits the intuitively pleasing idea that, at high densities, attractive contributions to the configurational energy begin to saturate well before zero temperature is reached. As a consequence, the force balance between repulsive and attractive forces stabilizes the liquid density, which thereafter becomes effectively independent of temperature. This fixed density in turn fixes all other density-dependent thermodynamic properties. These low-temperature, force-stabilized states are identified as glass states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app