JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Characterization of the DNA-Mediated Oxidation of Dps, A Bacterial Ferritin.

Dps proteins are bacterial ferritins that protect DNA from oxidative stress and have been implicated in bacterial survival and virulence. In addition to direct oxidation of the Dps iron sites by diffusing oxidants, oxidation from a distance via DNA charge transport (CT), where electrons and electron holes are rapidly transported through the base-pair π-stack, could represent an efficient DNA protection mechanism utilized by Dps. Here, we spectroscopically characterize the DNA-mediated oxidation of ferrous iron-loaded Dps. X-band EPR was used to monitor the oxidation of DNA-bound Dps after DNA photooxidation using an intercalating ruthenium photooxidant and the flash-quench technique. Upon irradiation with poly(dGdC)2, a signal arises with g = 4.3, consistent with the formation of mononuclear high-spin Fe(III) sites of low symmetry, the expected oxidation product of Dps with one iron bound at each ferroxidase site. When poly(dGdC)2 is substituted with poly(dAdT)2, the yield of Dps oxidation is decreased significantly, consistent with guanine radical intermediates facilitating Dps oxidation. We have also explored possible protein electron transfer (ET) intermediates in the DNA-mediated oxidation of ferrous iron-loaded Dps. Dps proteins contain a conserved tryptophan residue in close proximity to the iron-binding ferroxidase site (W52 in E. coli Dps). In EPR studies of the oxidation of ferrous iron-loaded Dps following DNA photooxidation, a W52A Dps mutant was significantly deficient compared to WT Dps in forming the characteristic EPR signal at g = 4.3, consistent with W52 acting as an ET hopping intermediate. This effect is mirrored in vivo in E. coli survival in response to hydrogen peroxide, where mutation of W52 leads to decreased survival under oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app