Add like
Add dislike
Add to saved papers

Cone signals in monostratified and bistratified amacrine cells of adult zebrafish retina.

Strata within the inner plexiform layer (IPL) of vertebrate retinas are suspected to be distinct signaling regions. Functions performed within adult zebrafish IPL strata were examined through microelectrode recording and staining of stratified amacrine types. The stimulus protocol and analysis discriminated the pattern of input from red, green, blue, and UV cones as well as the light-response waveforms in this tetrachromatic species. A total of 36 cells were analyzed. Transient depolarizing waveforms at ON and OFF originated with bistratified amacrine types, whose dendritic planes branched either in IPL sublaminas a & b, or only within sublamina a. Monophasic-sustained depolarizing waveforms originated with types monostratified in IPL s4 (sublamina b). OFF responses hyperpolarized at onset, depolarized at offset, and in some cases depolarized during mid-stimulus. These signals originated with types monostratified in s1 or s2 (sublamina a). Bistratified amacrines received depolarizing signals only from red cones, at both ON and OFF, while s4 stratified ON cells combined red and green cone signals. The s1/s2 stratified OFF cells utilized hyperpolarizing signals from red, red and green, or red and blue cones at ON, but only depolarizing red cone signals at OFF. ON and OFF depolarizing transients from red cones appear widely distributed within IPL strata. "C-type" physiologies, depolarized by some wavelengths, hyperpolarized by others, in biphasic or triphasic spectral patterns, originated with amacrine cells monostratified in s5. Collectively, cells in this stratum processed signals from all cone types. J. Comp. Neurol. 525:1532-1557, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app