Add like
Add dislike
Add to saved papers

Informing Ankle-Foot Prosthesis Prescription through Haptic Emulation of Candidate Devices.

Robotic prostheses can improve walking performance for amputees, but prescription of these devices has been hindered by their high cost and uncertainty about the degree to which individuals will benefit. The typical prescription process cannot well predict how an individual will respond to a device they have never used because it bases decisions on subjective assessment of an individual's current activity level. We propose a new approach in which individuals 'test drive' candidate devices using a prosthesis emulator while their walking performance is quantitatively assessed and results are distilled to inform prescription. In this system, prosthesis behavior is controlled by software rather than mechanical implementation, so users can quickly experience a broad range of devices. To test the viability of the approach, we developed a prototype emulator and assessment protocol, leveraging hardware and methods we previously developed for basic science experiments. We demonstrated emulations across the spectrum of commercially available prostheses, including traditional (e.g. SACH), dynamic-elastic (e.g. FlexFoot), and powered robotic (e.g. BiOM(®) T2) prostheses. Emulations exhibited low error with respect to reference data and provided subjectively convincing representations of each device. We demonstrated an assessment protocol that differentiated device classes for each individual based on quantitative performance metrics, providing feedback that could be used to make objective, personalized device prescriptions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app