EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Point of care with micro fluidic paper based device integrated with nano zeolite-graphene oxide nanoflakes for electrochemical sensing of ketamine.

Biosensors & Bioelectronics 2017 Februrary 16
The present study was aimed to develop an ultrasensitive technique for electroanalysis of ketamine; a date rape drug. It involved the fabrication of nano-hybrid based electrochemical micro fluidic paper-based analytical device (EμPADs) for electrochemical sensing of ketamine. A paper chip was developed using zeolites nanoflakes and graphene-oxide nanocrystals (Zeo-GO). EμPAD offers many advantages such as facile approach, economical and potential for commercialization. Nanocrystal modified EμPAD showed wide linear range 0.001-5nM/mL and a very low detection limit of 0.001nM/mL. The developed sensor was tested in real time samples like alcoholic and non-alcoholic drinks and found good correlation (99%). The hyphenation of EμPAD integrated with nanocrystalline Zeo-GO for detection of ketamine has immense prospective for field-testing platforms. An extensive development could be made for industrial translation of this fabricated device.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app