Add like
Add dislike
Add to saved papers

Cannabinoid 2 receptor is a novel anti-inflammatory target in experimental proliferative vitreoretinopathy.

Neuropharmacology 2017 Februrary
Proliferative vitreoretinopathy (PVR) can develop after ocular trauma or inflammation and is a common complication of surgery to correct retinal detachment. Currently, there are no pharmacological treatments for PVR. Cannabinoids acting at cannabinoid 2 receptor (CB2R) can decrease inflammation and fibrosis. The objective of this study was to examine the anti-inflammatory actions of CB2R as a candidate novel therapeutic target in experimental PVR. PVR was induced by intravitreal injection of dispase in wild-type (WT) and CB2R genetic knockout (CB2R-/- ) mice. Ocular pathology was studied at 24 h or one week after dispase injection. CB2R modulation was examined in WT mice, using the CB2R agonist, HU308, and the CB2R antagonist, AM630. Histopathological scoring and quantification of microglia was used to evaluate tissue pathology. Quantitative PCR and multiplex assays were used to assess changes in proinflammatory cytokines. Intravital microscopy (IVM) was used to visualize and quantify leukocyte-endothelial adhesion to the iridial microcirculation. Activation of CB2R with HU308 in WT mice with PVR decreased mean histopathological scores, the number of microglia, and leukocyte adhesion compared to vehicle-treated animals. Conversely, an increase in histopathological scores and activated microglia was observed in PVR animals after treatment with AM630. CB2R-/- mice with PVR exhibited exacerbated ocular histopathology, increased microglia numbers, and elevated protein levels of cytokines as compared to WT mice. In conclusion, our results indicate that intervention at early stage PVR with CB2R agonists reduces ocular inflammation and disease severity. CB2R may represent a therapeutic target to prevent PVR progression and vision loss. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app