Add like
Add dislike
Add to saved papers

Butterfly Deformation Modes in a Photoexcited Pyrazolate-Bridged Pt Complex Measured by Time-Resolved X-Ray Scattering in Solution.

Pyrazolate-bridged dinuclear Pt(II) complexes represent a series of molecules with tunable absorption and emission properties that can be directly modulated by structural factors, such as the Pt-Pt distance. However, direct experimental information regarding the structure of the emissive triplet excited state has remained scarce. Using time-resolved wide-angle X-ray scattering (WAXS), the excited triplet state molecular structure of [Pt(ppy)(μ-t-Bu2pz)]2 (ppy = 2-phenylpyridine; t-Bu2pz = 3,5-di-tert-butylpyrazolate), complex 1, was obtained in a dilute (0.5 mM) toluene solution utilizing the monochromatic X-ray pulses at Beamline 11IDD of the Advanced Photon Source. The excited-state structural analysis of 1 was performed based on the results from both transient WAXS measurements and density functional theory calculations to shed light on the primary structural changes in its triplet metal-metal-to-ligand charge-transfer (MMLCT) state, in particular, the Pt-Pt distance and ligand rotation. We found a pronounced Pt-Pt distance contraction accompanied by rotational motions of ppy ligands toward one another in the MMLCT state of 1. Our results suggest that the contraction is larger than what has previously been reported, but they are in good agreement with recent theoretical efforts and suggest the ppy moieties as targets for rational synthesis aimed at tuning the excited-state structure and properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app