Add like
Add dislike
Add to saved papers

Role of duty cycle on Pseudomonas aeruginosa growth inhibition mechanisms by positive electric pulses.

BACKGROUND: P. aeruginosa considered as a notoriously difficult organism to be controlled by antibiotics or disinfectants. The potential use of alternative means as an aid to avoid the wide use of antibiotics against bacteria pathogen has been recently arisen remarkably.

OBJECTIVE: Effect of extremely low frequency positive electric pulse with different duty cycles on Pseudomonas aeruginosa (ATCC: 27853) growth by constructed and implemented exposure device was investigated in this study.

METHODS: The exposure device was applied to give extremely low frequency in the range of 0.1 up to 20 Hz with the capability to control the duty cycle of each pulse with variation from 10% up to 100%. Growth curves of Pseudomonas aeruginosa were investigated before and after exposure to different frequencies (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 Hz) through measuring the optical density and cell count. Exposures to selected frequencies in the whole ranges of duty cycles were done. These studies were followed by DNA fragmentation, transmission electron microscope (TEM), antibiotic susceptibility tests, and dielectric measurements.

RESULTS: Findings revealed inhibition effect by 48.56% and 47.4% together with change in the DNA structural properties for samples exposed to 0.5 Hz and 0.7 Hz respectively. Moreover the data indicated important role of duty cycle on the inhibition mechanism.

CONCLUSION: It is concluded that there are two different mechanisms of interaction between positive electric pulse and microorganism occurred; 0.5 Hz caused rupture in cell wall while 0.7 Hz caused denaturation of the inner consistent of the cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app