Add like
Add dislike
Add to saved papers

Altered expression of retinoblastoma 1 in Hirschsprung's disease.

PURPOSE: The retinoblastoma 1 (RB1) tumor suppressor is a critical regulator of cell cycle progression and development, and has been widely documented to be inactivated in human cancer. A recent study using RB1 knockout mice suggested a new role for RB1 in the normal regulation of the enteric nervous system (ENS), because of knockout mice showing ENS abnormalities and severe intestinal dysmotility. The aim of our study was to investigate the expression of RB1 in the normal human colon and in Hirschsprung's disease (HD).

MATERIALS AND METHODS: HD tissue specimens (n=10) were collected at the time of pull-through surgery, while colonic control samples were obtained at the time of colostomy closure in patients with imperforate anus (n=10). Immunolabeling of RB1 was visualized using confocal microscopy to assess protein distribution, while western blot analysis was undertaken to quantify RB1 protein expression.

RESULTS: Immunohistochemistry revealed RB1 co-localized with platelet derived growth factor receptor alpha-positive (PDGFRα(+)) cells, nitrergic neurons and glia in controls and the ganglionic region of HD, with a marked reduction in the aganglionic HD specimens. Western blotting revealed a marked decrease in RB1 protein expression in the aganglionic region of HD colon compared to ganglionic and normal controls.

CONCLUSION: We provide evidence of the presence of RB1 expression in the human colon in HD. As RB1 is known to colocalize with nitrergic neurons, the decreased expression of RB1 in the aganglionic bowel is most likely a secondary phenomenon because of the deficient nitrergic innervation in HD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app