Add like
Add dislike
Add to saved papers

ERMP1, a novel potential oncogene involved in UPR and oxidative stress defense, is highly expressed in human cancer.

Oncotarget 2016 September 28
Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are highly activated in cancer and involved in tumorigenesis and resistance to anti-cancer therapy. UPR is becoming a promising target of anti-cancer therapies. Thus, the identification of UPR components that are highly expressed in cancer could offer new therapeutic opportunity.In this study, we demonstrate that Endoplasmic Reticulum Metallo Protease 1 (ERMP1) is broadly expressed in a high percentage of breast, colo-rectal, lung, and ovary cancers, regardless of their stage and grade. Moreover, we show that loss of ERMP1 expression significantly hampers proliferation, migration and invasiveness of cancer cells. Furthermore, we show that this protein is an important player in the UPR and defense against oxidative stress. ERMP1 expression is strongly affected by reticular stress induced by thapsigargin and other oxidative stresses. ERMP1 silencing during reticular stress impairs the activation of PERK, a key sensor of the UPR activation. Loss of ERMP1 also prevents the expression of GRP78/BiP, a UPR stress marker involved in the activation of the survival pathway. Finally, ERMP1 silencing in cells exposed to hypoxia leads to inhibition of the Nrf2-mediated anti-oxidant response and to reduction of accumulation of HIF-1, the master transcription factor instructing cells to respond to hypoxic stress. Our results suggest that ERMP1 could act as a molecular starter to the survival response induced by extracellular stresses. Moreover, they provide the rationale for the design of ERMP1-targeting drugs that could act by inhibiting the UPR initial adaptive response of cancer cells and impair cell survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app