Add like
Add dislike
Add to saved papers

A novel detection of radon based on its decay product inducing conformational changes of an aptamer probe.

Analytica Chimica Acta 2016 September 15
This study proposes a novel method for the detection of inert gas radon using a label-free, specific, fluorescence-sensing aptamer in the context of PW17-OG system. This method utilizes the cyanine dye OliGreen (OG) as a signal reactor and the aptamer PW17 as a fluorescent identification probe. When OG integrates into the free curling PW17, a strong fluorescence signal is generated. After radon decays, the long lived naturally occurring radon progeny Pb being disposed and introduced to the system. Lead ions induce PW17 to form a stable G-quadruplex, thereby inhibiting the interaction between OG and PW17 and resulting in a reduction of the fluorescence intensity. The fluorescence intensity show a good linear relationship with lead ion and the radon concentration (D), thereinto, We fitted linear regression of radon concentration in the range of 0.92-4.22 (×10(4) Bqhm(-3)) to receive a good relationship between ΔF and the concentration of radon with the detection limit of 1963 Bqhm(-3). This method has been successfully applied for detecting standard cumulative concentration of radon and the detection limit reached the national standard of China. This sensitive method can exclude radiation damage in field testing, furthermore, it explores a new field in biological analysis using an aptamer to detected inorganic, gaseous, and radioactive materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app