JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis.

Analytica Chimica Acta 2016 September 15
A novel three-dimensional paper-based electrochemical impedance device (3D-PEID) is first introduced for measuring multiple diabetes markers. Herein, a simple 3D-PEID composed of a dual screen-printed electrode on wax-patterned paper coupled with a multilayer of magnetic paper was fabricated for label-free electrochemical detection. The results clearly demonstrated in a step-wise manner that the haptoglobin (Hp)-modified and 3-aminophenylboronic acid (APBA)-modified eggshell membranes (ESMs) were highly responsive to a clinically relevant range of total (0.5-20 g dL(-1); r(2) = 0.989) and glycated haemoglobin (HbA1c) (2.3%-14%; r(2) = 0.997) levels with detection limits (S/N = 3) of 0.08 g dL(-1) and 0.21%, respectively. The optimal binding frequencies of total haemoglobin and HbA1c to their specific recognition elements were 5.18 Hz and 9.99 Hz, respectively. The within-run coefficients of variation (CV) were 1.84%, 2.18%, 1.72%, and 2.01%, whereas the run-to-run CVs were 2.11%, 2.41%, 2.08%, and 2.21%, when assaying two levels of haemoglobin and HbA1c, respectively. The CVs for the haemoglobin and HbA1c levels measured on ten independently fabricated paper-based sheets were 1.96% and 2.10%, respectively. These results demonstrated that our proposed system achieved excellent precision for the simultaneous detection of total haemoglobin and HbA1c, with an acceptable reproducibility of fabrication. The long-term stability of the Hp-modified eggshell membrane (ESM) was 98.84% over a shelf-life of 4 weeks, enabling the possibility of storage or long-distance transport to remote regions, particularly in resource-limited settings; however, for the APBA-modified ESM, the stability was 92.35% over a one-week period. Compared with the commercial automated method, the results demonstrated excellent agreement between the techniques (p-value < 0.05), thus permitting the potential application of 3D-PEID for the monitoring of the glycaemic status in diabetic patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app