Add like
Add dislike
Add to saved papers

Baicalin Scavenged Reactive Oxygen Species and Protected Human Keratinocytes Against UVB-induced Cytotoxicity.

In Vivo 2016 September
Ultraviolet B (UVB), with a wavelength of 280-320 nm, represents one of the most important environmental factors for skin disorders, including sunburn, hyperpigmentation, solar keratosis, solar elastosis and skin cancer. Therefore, protection against excessive UVA-induced damage is useful for prevention of sunburn and other human diseases. Baicalin, a major component of traditional Chinese medicine Scutellaria baicalensis, has been reported to possess antioxidant and cytostatic capacities. In this study, we examined whether baicalin is also capable of protecting human keratinocytes from UVB irradiation. The results showed that baicalin effectively scavenged reactive oxygen species (ROS) elevated within 4 h after UVB radiation and reversed the UVB-suppressed cell viability and UVB-induced apoptosis after 24 h. Our results demonstrated the utility of baicalin to complement the contributions of traditional Chinese medicine in UVB-induced damage to skin and suggested their potential application as pharmaceutical agents in long-term sun-shining injury prevention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app