Add like
Add dislike
Add to saved papers

Morphine-induced Straub tail reaction in mice treated with serotonergic compounds.

Constitutively active 5-HT2 receptors have been suggested to contribute to motoneuronal excitability, muscle spasms and spasticity. Accordingly, 5-HT2C receptor inverse agonists have been demonstrated in pilot experiments to reduce spasticity in animal model of spasticity and patients with spinal cord injuries. Thus, 5-HT2C receptor inverse agonists may represent a novel class of anti-spasticity agents justifying a search for compounds with robust 5-HT2C receptor inverse agonist activity either among the existing medications or via a dedicated drug discovery program. Morphine-induced Straub tail response in mice is regarded as a model of transient spasticity that may be suitable for supporting such drug discovery efforts. Subcutaneous injection of morphine (10-60mg/kg) induced a dose-dependent Straub tail reaction in male Swiss mice with maximum response obtained 15-30min after the morphine administration. When given prior to morphine, 5-HT2B/2C receptor inverse agonists cyproheptadine (1-10mg/kg, i.p.) and SB206553 (0.3-3mg/kg, i.p.) diminished Straub tail reaction dose-dependently without affecting spontaneous locomotor activity. In contrast, 5-HT2B/2C receptor antagonist methysergide (1-5.6mg/kg, i.p.) and 5-HT2C receptor antagonist SB242084 (1-5.6mg/kg, i.p.) as well as 5-HT2A receptor inverse agonist pimavanserin (1-10mg/kg, i.p.) had no appreciable effects on Straub tail response. Taken together, the findings indicate that constitutive activity of 5-HT2B/2C receptor may be involved in the mechanisms of morphine-induced spasticity. Thus, morphine-induced Straub tail response may be evaluated further as a candidate higher throughput test to identify 5-HT2C receptor inverse agonists with anti-spasticity effects in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app