JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

A strategy for generating kidney organoids: Recapitulating the development in human pluripotent stem cells.

Developmental Biology 2016 December 16
Directed differentiation of human pluripotent stem cells (hPSCs) can provide us any required tissue/cell types by recapitulating the development in vitro. The kidney is one of the most challenging organs to generate from hPSCs as the kidney progenitors are composed of at least 4 different cell types, including nephron, collecting duct, endothelial and interstitium progenitors, that are developmentally distinguished populations. Although the actual developmental process of the kidney during human embryogenesis has not been clarified yet, studies using model animals accumulated knowledge about the origins of kidney progenitors. The implications of these findings for the directed differentiation of hPSCs into the kidney include the mechanism of the intermediate mesoderm specification and its patterning along with anteroposterior axis. Using this knowledge, we previously reported successful generation of hPSCs-derived kidney organoids that contained all renal components and modelled human kidney development in vitro. In this review, we explain the developmental basis of the strategy behind this differentiation protocol and compare strategies of studies that also recently reported the induction of kidney cells from hPSCs. We also discuss the characterization of such kidney organoids and limitations and future applications of this technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app