Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vivo quantification of myocardial stiffness in hypertensive porcine hearts using MR elastography.

PURPOSE: To determine alteration in left ventricular (LV) myocardial stiffness (MS) with hypertension (HTN). Cardiac MR elastography (MRE) was used to estimate MS in HTN induced pigs and MRE-derived MS measurements were compared against LV pressure, thickness and circumferential strain.

MATERIALS AND METHODS: Renal-wrapping surgery was performed to induce HTN in eight pigs. LV catheterization (to measure pressure) and cardiac MRI (1.5 Tesla; gradient echo-MRE and tagging) was performed pre-surgery at baseline (Bx), and post-surgery at month 1 (M1) and month 2 (M2). Images were analyzed to estimate LV-MS, thickness, and circumferential strain across the cardiac cycle. The associations between end-diastolic (ED) and end-systolic (ES) MS and (i) mean LV pressure; (ii) ED and ES thickness, respectively; and (iii) circumferential strain were evaluated using Spearman's correlation method.

RESULTS: From Bx to M2, mean pressure, MRE-derived stiffness, and thickness increased while circumferential strain decreased significantly (slope test, P ≤ 0.05). Both ED and ES MS had significant positive correlation with (i) mean pressure (ED MS: ρ = 0.56; P = 0.005 and ES MS: ρ = 0.45; P = 0.03); (ii) ED thickness ( ρ = 0.73; P < 0.0001) and ES thickness ( ρ = 0.84; P < 0.0001), respectively; but demonstrated a negative trend with circumferential strain (ED MS: ρ = 0.31 and ES MS: ρ = 0.37).

CONCLUSION: This study demonstrated that, in a HTN porcine model, MRE-derived MS increased with increase in pressure and thickness.

LEVEL OF EVIDENCE: 1 J. Magn. Reson. Imaging 2017;45:813-820.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app