Add like
Add dislike
Add to saved papers

Differential effects of histone deacetylase inhibitors on cellular drug transporters and their implications for using epigenetic modifiers in combination chemotherapy.

Oncotarget 2016 September 28
HDAC inhibitors, DNA alkylators and nucleoside analogs are effective components of combination chemotherapy. To determine a possible mechanism of their synergism, we analyzed the effects of HDAC inhibitors on the expression of drug transporters which export DNA alkylators. Exposure of PEER lymphoma T-cells to 15 nM romidepsin (Rom) resulted in 40%-50% reduction in mRNA for the drug transporter MRP1 and up to ~500-fold increase in the MDR1 mRNA within 32-48 hrs. MRP1 protein levels concomitantly decreased while MDR1 increased. Other HDAC inhibitors - panobinostat, belinostat and suberoylanilide hydroxamic acid (SAHA) - had similar effects on these transporters. The protein level of MRP1 correlated with cellular resistance to busulfan and chlorambucil, and Rom exposure sensitized cells to these DNA alkylators. The decrease in MRP1 correlated with decreased cellular drug export activity, and increased level of MDR1 correlated with increased export of daunorubicin. A similar decrease in the level of MRP1 protein, and increase in MDR1, were observed when mononuclear cells derived from patients with T-cell malignancies were exposed to Rom. Decreased MRP1 and increased MDR1 expressions were also observed in blood mononuclear cells from lymphoma patients who received SAHA-containing chemotherapy in a clinical trial. This inhibitory effect of HDAC inhibitors on the expression of MRP1 suggests that their synergism with DNA alkylating agents is partly due to decreased efflux of these alkylators. Our results further imply the possibility of antagonistic effects when HDAC inhibitors are combined with anthracyclines and other MDR1 drug ligands in chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app