JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

ARF1 and ARF6 regulate recycling of GRASP/Tamalin and the Rac1-GEF Dock180 during HGF-induced Rac1 activation.

Small GTPases 2018 May 5
Hepatocyte growth factor (HGF) is a potent signaling factor that acts on epithelial cells, causing them to dissociate and scatter. This migration is coordinated by a number of small GTPases, such as ARF6 and Rac1. Active ARF6 is required for HGF-stimulated migration and intracellular levels of ARF6-GTP and Rac1-GTP increase following HGF treatment. During migration, cross talk between ARF6 and Rac1 occurs through formation of a multi-protein complex containing the ARF-GEF cytohesin-2, the scaffolding protein GRASP/Tamalin, and the Rac1-GEF Dock180. Previously, the role of ARF6 in this process was unclear. We have now found that ARF6 and ARF1 regulate trafficking of GRASP and Dock180 to the plasma membrane following HGF treatment. Trafficking of GRASP and Dock180 is impaired by blocking ARF6-mediated recycling pathways and is required for HGF-stimulated Rac1 activation. Finally, HGF treatment stimulates association of GRASP and Dock180. Inhibition of ARF6 trafficking pathways traps GRASP and Dock180 as a complex in the cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app