Add like
Add dislike
Add to saved papers

Yolk-Shell MnO@ZnMn2 O4 /N-C Nanorods Derived from α-MnO2 /ZIF-8 as Anode Materials for Lithium Ion Batteries.

Small 2016 October
Manganese oxides (MnOx ) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk-shell nanorods comprising of nitrogen-doped carbon (N-C) coating on manganese monoxide (MnO) coupled with zinc manganate (ZnMn2 O4 ) nanoparticles are manufactured via one-step carbonization of α-MnO2 /ZIF-8 precursors. When evaluated as anodes for lithium ion batteries, MnO@ZnMn2 O4 /N-C exhibits an reversible capacity of 803 mAh g(-1) at 50 mA g(-1) after 100 cycles, excellent cyclability with a capacity of 595 mAh g(-1) at 1000 mAg(-1) after 200 cycles, as well as better rate capability compared with those non-N-C shelled manganese oxides (MnOx ). The outstanding electrochemical performance is attributed to the unique yolk-shell nanorod structure, the coating effect of N-C and nanoscale size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app