Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reduction-responsive multifunctional hyperbranched polyaminoglycosides with excellent antibacterial activity, biocompatibility and gene transfection capability.

Biomaterials 2016 November
There is an increasing demand in developing of multifunctional materials with good antibacterial activity, biocompatibility and drug/gene delivery capability for next-generation biomedical applications. To achieve this purpose, in this work series of hydroxyl-rich hyperbranched polyaminoglycosides of gentamicin, tobramycin, and neomycin (HP and SS-HP with redox-responsive disulfide bonds) were readily synthesized via ring-opening reactions in a one-pot manner. Both HP and SS-HP exhibit high antibacterial activity toward Escherichia coli and Staphylococcus aureus. Meanwhile, the hemolysis assay of the above materials shows good biocompatibility. Moreover, SS-HPs show excellent gene transfection efficiency in vitro due to the breakdown of reduction-responsive disulfide bonds. For an in vivo anti-tumor assay, the SS-HP/p53 complexes exhibit potent inhibition capability to the growth of tumors. This study provides a promising approach for the design of next-generation multifunctional biomedical materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app