Add like
Add dislike
Add to saved papers

Overgrowth of Silver Nanodisks on a Substrate into Vertically Aligned Nanopillars for Chromatic Light Polarization.

Vertically aligned and well-separated 1D silver nanopillars (AgNPLs) are prepared on a large-area quartz surface using a robust colloidal chemical technique. Silver nanodisk (AgND) monolayers were first deposited on quartz using the Langmuir-Blodgett technique, and the presence of the substrate induced asymmetric chemical overgrowth of the AgNDs into AgNPLs. The height and diameter of the prepared AgNPLs were controlled by changing the rate of the overgrowth reaction. Chloride ions were used during overgrowth to etch the silver atoms that formed sharp features on the sides of the AgNDs and to limit growth in the lateral direction. The grown AgNPLs displayed two surface plasmon resonance modes corresponding to the transverse and longitudinal electron oscillations. The intensity of the longitudinal mode increased by a factor of 9 while the intensity of the transverse mode decreased by a factor of 2.5 upon increasing the angle of incidence of the exciting light from 0° to 60°. This interesting property makes these AgNPL arrays on quartz useful as chromatic light polarizers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app