Add like
Add dislike
Add to saved papers

Reactive blending of thermoplastic starch and polyethylene-graft-maleic anhydride with chitosan as compatibilizer.

Carbohydrate Polymers 2016 November 21
Cassava starch was melt-blended with glycerol (70/30wt%/wt%) at 140°C to prepare thermoplastic starch (TPS). Chitosan (CTS) was premixed with starch and glycerol, in acidified water (lactic acid 2wt%), at 1, 5 and 10wt%/wt%. TPS/CTS was then melt-blended (160°C) with polyethylene-graft-maleic anhydride (PE-MAH). Phase determination and scanning electron microscopy indicated TPS/PE-MAH/CTS had a co-continuous morphology and CTS-induced phase inversion to give dispersed PE-MAH particles in a TPS matrix. Tensile strength at break and elongation, melt viscosity, fracture toughness and water contact angle of TPS/PE-MAH were improved by CTS incorporation. TPS/PE-MAH/CTS blends decreased the melting temperature of TPS and PE-MAH compared to the neat polymers. FTIR confirmed a reaction had occurred between amino groups (NH2) of CTS and the MAH groups of PE-MAH. This reaction and the enhanced miscibility between TPS and CTS improved the mechanical properties of the TPS/PE-MAH/CTS blend, particularly at 5wt%/wt% CTS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app