JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Ubiquitin-Conjugating Enzyme 9 Phosphorylation as a Novel Mechanism for Potentiation of the Inflammatory Response.

Lipopolysaccharide (LPS), a bacterial endotoxin, induces inflammation in macrophages via activation of NF-κB signaling. Sumoylation is a post-translational modification mediated by the small ubiquitin-like modifier, SUMO. Ubiquitin-conjugating enzyme 9 (UBC9) is the only known SUMO conjugating enzyme. LPS treatment lowers SUMO-1 and UBC9 mRNA levels in primary astrocytes. UBC9 can degrade NF-κB inhibitor α (Ikbα) via a SUMO2/3-ubiquitin pathway. However, UBC9 may also promote Ikbα stability by SUMO-1 conjugation that further regulates NF-κB signaling. The role of UBC9 in liver inflammation is unknown. We reported that CDK1-mediated phosphorylation of UBC9 enhanced its stability. Herein, we describe an anti-inflammatory role of UBC9 that is lost when it is phosphorylated during inflammation. LPS exposure caused induction in UBC9 phosphorylation and CDK1 activation specifically in Kupffer cells in vivo and in RAW264.7 macrophages in vitro. Silencing or overexpression experiments in vitro and in vivo showed that UBC9 was required to blunt the proinflammatory response elicited by LPS. LPS stimulation raised the binding of phospho-UBC9 but not the unphosphorylated counterpart, to Ikbα in RAW264.7 macrophages. Hence, phospho-UBC9 may promote NF-κB signaling by regulating Ikbα and this may be a novel mechanism that deregulates liver inflammatory signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app