Add like
Add dislike
Add to saved papers

Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT6 receptor (Kb = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC50hAChE = 12 nM, IC50hBuChE = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app