JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protein Interaction Network of Human Protein Kinase D2 Revealed by Chemical Cross-Linking/Mass Spectrometry.

We investigated the interaction network of human PKD2 in the cytosol and in Golgi-enriched subcellular protein fractions by an affinity enrichment strategy combined with chemical cross-linking/mass spectrometry (MS). Analysis of the subproteomes revealed the presence of distinct proteins in the cytosolic and Golgi fractions. The covalent fixation of transient or weak interactors by chemical cross-linking allowed capturing interaction partners that might otherwise disappear during conventional pull-down experiments. In total, 31 interaction partners were identified for PKD2, including glycogen synthase kinase-3 beta (GSK3B), 14-3-3 protein gamma (YWHAG), and the alpha isoform of 55 kDa regulatory subunit B of protein phosphatase 2A (PPP2R2A). Remarkably, the entire seven-subunit Arp2/3 complex (ARPC1B, ARPC2, ARPC3, ARPC4, ARPC5, ACTR3, ACTR2) as well as ARPC1A and ARPC5L, which are putative substitutes of ARPC1B and ARPC5, were identified. We provide evidence of a direct protein-protein interaction between PKD2 and Arp2/3. Our findings will pave the way for further structural and functional studies of PKD2 complexes, especially the PKD2/Arp2/3 interaction, to elucidate the role of PKD2 for transport processes at the trans-Golgi network. Data are available via ProteomeXchange with identifiers PXD003909 (enrichment from cytosolic fractions), PXD003913 (enrichment from Golgi fractions), and PXD003917 (subcellular fractionation).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app