Add like
Add dislike
Add to saved papers

pH-Responsive Core-Shell Structured Nanoparticles for Triple-Stage Targeted Delivery of Doxorubicin to Tumors.

The application of cytotoxic chemotherapeutics in cancer therapy has been largely restricted by their lack of selectivity. Despite the existence of numerous targeted delivery systems, it is practically challenging to develop one single system to simultaneously cover tumor-targeted delivery of chemotherapeutics at the tissue, cellular, and subcellular levels. To solve this problem, pH-responsive core-shell structured nanoparticles (CSNPs) were self-assembled in this study to provide triple-stage targeted delivery of doxorubicin (DOX) from the injection site to the nuclei of cancer cells. Amino-functionalized mesoporous silica nanoparticles (MSN) were doubly modified with TAT peptide and acid-cleavable polyethylene glycol (PEG) as the DOX-loaded cationic core. The anionic shell was constituted by galactose-modified poly(allylamine hydrochloride)-citraconic anhydride, a hepato-carcinoma-targeting polymer with charge-reversible property. In vitro results showed that PEG effectively reduced protein adsorption and phagocytic capture of CSNPs in the circulating blood (pH 7.4), thus facilitating passive accumulation in tumors (tissue level). Following PEG detachment via acidic hydrolysis in tumor microenvironment (pH 6.5), the exposed galactose ligands endowed CSNPs with active internalization into hepato-carcinoma cells (cellular level). Afterward, the acidity in endosomes and lysosomes (pH 5.0) triggered the conversion of anionic shell into positive charges, leading to core-shell disassembly and subsequent TAT-mediated delivery of DOX to the nuclei (subcellular level). Importantly, the efficiencies of each targeting moiety were nicely preserved when combining together in CSNPs. As a result, improved tumorous distribution and potent therapeutic efficacy of CSNPs were noted in tumor-bearing mice at a relatively low dose. CSNPs therefore provide an efficient and nontoxic platform for the targeted delivery of antitumor drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app