Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Markov chain Monte Carlo and expectation maximization approaches for estimation of haplotype frequencies for multiply infected human blood samples.

Malaria Journal 2016 August 26
BACKGROUND: Haplotypes are important in anti-malarial drug resistance because genes encoding drug resistance may accumulate mutations at several codons in the same gene, each mutation increasing the level of drug resistance and, possibly, reducing the metabolic costs of previous mutation. Patients often have two or more haplotypes in their blood sample which may make it impossible to identify exactly which haplotypes they carry, and hence to measure the type and frequency of resistant haplotypes in the malaria population.

RESULTS: This study presents two novel statistical methods expectation-maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms to investigate this issue. The performance of the algorithms is evaluated on simulated datasets consisting of patient blood characterized by their multiplicity of infection (MOI) and malaria genotype. The datasets are generated using different resistance allele frequencies (RAF) at each single nucleotide polymorphisms (SNPs) and different limit of detection (LoD) of the SNPs and the MOI. The EM and the MCMC algorithm are validated and appear more accurate, faster and slightly less affected by LoD of the SNPs and the MOI compared to previous related statistical approaches.

CONCLUSIONS: The EM and the MCMC algorithms perform well when analysing malaria genetic data obtained from infected human blood samples. The results are robust to genotyping errors caused by LoDs and function well even in the absence of MOI data on individual patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app