Add like
Add dislike
Add to saved papers

Activation of the Na(+)/H(+) exchanger in isolated cardiomyocytes through β-Raf dependent pathways. Role of Thr(653) of the cytosolic tail.

The mammalian Na(+)/H(+) exchanger isoform 1 (NHE1) is a ubiquitous plasma membrane protein that is a key regulator of intracellular pH in isolated cardiomyocytes. A 500 amino acid membrane domain removes protons and is regulated by a 315 amino acid cytosolic domain. In the myocardium, aberrant regulation of NHE1 contributes to ischemia reperfusion damage and to heart hypertrophy. We examined mechanisms of regulation of NHE1 in the myocardium by endothelin and β-Raf. Endothelin stimulated NHE1 activity and activated Erk-dependent pathways. Inhibition of β-Raf reduced NHE1 activity and Erk-pathway activation. We demonstrated that myocardial β-Raf binds to the C-terminal 182 amino acids of the NHE1 protein and that β-Raf is associated with NHE1 in intact cardiomyocytes. NHE1 was phosphorylated in vivo and the protein kinase inhibitor sorafenib reduced NHE1 phosphorylation levels. Immunoprecipitates of β-Raf from cardiomyocytes phosphorylated the C-terminal 182 amino acids of NHE1 and mass spectrometry analysis showed that amino acid Thr(653) was phosphorylated. Mutation of this amino acid to Ala resulted in defective activity while mutation to Asp restored the activity. The results demonstrate that Thr(653) is an important regulatory amino acid of NHE1 that is activated through β-Raf dependent pathways by phosphorylation either directly or indirectly by β-Raf, and this affects NHE1 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app