Add like
Add dislike
Add to saved papers

Involvement of oxidative stress in increased peripheral nerve firing during spontaneous dysesthesia in a mouse model of ischemia-reperfusion.

Neuroscience Letters 2016 September 20
Transient ischemia-reperfusion in the hand and foot elicits spontaneous dysesthesia. However, the mechanisms by which this occurs are not completely understood. The objectives of this study were to examine peripheral neural activity related to spontaneous dysesthesia in a mouse model of hind-paw transient ischemic-reperfusion and to investigate the involvement of oxidative stress in this neural activity. The femoral artery and vein were interrupted for 10min using tourniquet pressure, before the tourniquet was removed to allow reperfusion of the hind paw. Neural activity in the saphenous nerve was recorded during both ischemia and reperfusion. In both the ischemic phase and the reperfusion phase, the frequency of saphenous nerve firing was significantly increased compared to baseline. The antioxidant agent N-acetyl-l-cysteine inhibited significantly the firing of the saphenous nerve in both the maximum and minimum activity periods during ischemia, and in the maximum activity state after reperfusion percentage inhibition being approximately 68%, 60%, and 58%, respectively. In the reperfusion phase, the production of 4-hydroxy-2-noneal, a major product of endogenous lipid peroxidation, was significantly increased in the plantar skin, and this was inhibited by N-acetyl-l-cysteine. In the ischemic phase, a similar trend was observed. These results suggest that an increase in peripheral nerve activity related to oxidative stress may be involved in the spontaneous dysesthesia induced by transient ischemia-reperfusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app