JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reversible FMN dissociation from Escherichia coli respiratory complex I.

Respiratory complex I transfers electrons from NADH to quinone, utilizing the reaction energy to translocate protons across the membrane. It is a key enzyme of the respiratory chain of many prokaryotic and most eukaryotic organisms. The reversible NADH oxidation reaction is facilitated in complex I by non-covalently bound flavin mononucleotide (FMN). Here we report that the catalytic activity of E. coli complex I with artificial electron acceptors potassium ferricyanide (FeCy) and hexaamineruthenium (HAR) is significantly inhibited in the enzyme pre-reduced by NADH. Further, we demonstrate that the inhibition is caused by reversible dissociation of FMN. The binding constant (Kd) for FMN increases from the femto- or picomolar range in oxidized complex I to the nanomolar range in the NADH reduced enzyme, with an FMN dissociation time constant of ~5s. The oxidation state of complex I, rather than that of FMN, proved critical to the dissociation. Such dissociation is not observed with the T. thermophilus enzyme and our analysis suggests that the difference may be due to the unusually high redox potential of Fe-S cluster N1a in E. coli. It is possible that the enzyme attenuates ROS production in vivo by releasing FMN under highly reducing conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app